

Guide to visionCATS (version 3.0)

Table of Contents

1	Gen	eral Introduction	3
	1.1	The visionCATS concept: HPTLC made easy!	3
	1.2	Key features	3
	1.3	Benefits	4
2	Getti	ng started	6
	2.1	Main window	6
3	Worl	king with method templates	8
4	Worl	king with methods from the Method Library	9
5	Meth	od transfer	10
	5.1	Downloading a method from the Method Library	10
	5.2	Performing a method transfer validation	12
6	Crea	ting a new method	13
	6.1	Creating a qualitative method (e.g. identification of a herbal drug)	15
	6.2	Creating a quantitative method	16
7	Perf	orming an analysis	17
8	Data	view	19
	8.1	Tools	20
	8.2	Export of Images	23
9	Worl	king with SST	24
1() Scar	nning Densitometry	26
	10.1	Single-wavelength scan	26
	10.2	Multi-wavelength scan	28
11	Imag	je profiles	29
12	2 Eval	uation	31
	12.1	Basics of quantitative evaluation in visionCATS	31
	12.2	Manual Mode	34
	12.3	Expert Mode	35
	12.4	Peak table export	36
	12.5	Related substances	37
	12.6	Internal standard	39
	12.7	Reproducibility	39
	12.8	Limit test	40
	12.9	Export results	41
	12.10	Export graphs	41
13	S Spec	ctrum Scan	42
14	Worl	king with Comparison files	44
	14.1	Image Comparison	44
	14.2	Profile Comparison	45

1	4.3	Spectrum Comparison	. 47
15	Othe	er features	. 48
1	5.1	Quick scan / Partial scan	. 48
1	5.2	Dual Wavelength scan and (blank) track subtraction	. 49
1	5.3	AMD 2 settings	. 49
16	Rep	orts	. 51
17	Expo	ort of Data	. 52
18	21 C	FR Part 11	. 53
19	Exar	nple Files	. 54
20	Onlir	ne help	. 55
21	Case	e studies with application tutorial videos	. 56
2	21.1	HPTLC-Fingerprint of Ginkgo biloba flavonoids (qualitative example)	. 56
2	21.2	Identification of fixed oils by HPTLC (qualitative example, including method transfer validation)	. 56
2	21.3	In-process control during chemical synthesis (qualitative example, including HPTLC-MS)	. 56
2	21.4	Quantitative determination of steviol glycosides (quantitative example)	. 56

1 General Introduction

1.1 The *visionCATS* concept: HPTLC made easy!

visionCATS is CAMAG's current HPTLC software. It stands for ease of use and intuitive simplicity. The software organises the workflow of HPTLC and controls all involved CAMAG instruments and the CAMAG[®] HPTLC PRO. The easy-to-navigate user interface guides effectively through the chromatographic process – from analysis definition to analysis reporting.

As state-of-the-art software, *visionCATS* is based on a client-server system offering enormous flexibility to the number of instruments and users that are working together, enabling access to the same data for all members of a work group. The sample-oriented approach allows for creating virtual plates with tracks originating from different plates, for example, batch-to-batch comparison or long-term stability testing. With *visionCATS* relevant samples can be located easier and faster than ever: a powerful search tool and a file explorer that includes extended preview functionalities enable highly comfortable searches for samples, methods, and analysis files.

The default settings implemented in the software were chosen according to the general chapters of the USP (chapter <203>) and the Ph. Eur. (2.8.25). This enables analysts, who work in a cGMP regulated environment, to run standardized HPTLC without the need for modifications in the software settings. In addition, *visionCATS* provides a Method Library with procedures that are in full compliance with chapter <203> (see chapter 4). All HPTLC methods of the USP Dietary Supplement Compendium (DSC 2015) are included. Other library methods of identification originate from the European Pharmacopoeia and the HPTLC Association. Methods developed by CAMAG are in the library as well.

visionCATS was developed for working in routine labs with validated methods. The primary focus is on following a standardized methodology (supported by the default settings according to the general chapters of the pharmacopoeias) to obtain reproducible and reliable analytical results. Data (digital images /scan data) should be qualified by a System Suitability Test (SST). *visionCATS* supports compliance with cGMP/GLP and 21 CFR Part 11.

1.2 Key features

• Supports qualitative and quantitative HPTLC Analysis

visionCATS organizes the workflow, controls the involved CAMAG instruments, and manages data.

Comparison Viewer

The sample-oriented approach allows for creating virtual plates from tracks originating from different plates. In the Comparison Viewer samples can be compared on the same screen side by side using selected racks of images (HPTLC fingerprints) or peak profiles of the tracks (generated from images and/or or obtained by scanning densitometry). Furthermore UV spectra of individual substances/peaks can be compared.

• Image enhancement tools

visionCATS supports low-noise, high-dynamic range imaging (HDRI) and includes a comprehensive set of Image Enhancement Tools (chapter 8).

Method Library

visionCATS provides a free of charge HPTLC Method Library for licensed users (see chapter 4)

• Flexible Reporting

visionCATS contains a fully configurable reporting system for analysis and comparison files (<u>http://hptlcmethods.cloudapp.net/300/administration/report/report.html</u>).

1.3 Benefits

- Enhanced usability
 - Focus on usability and modern appearance
 - One-click solution with semi-automatic settings
 - 3 levels for the user interface (easy, medium and expert). All levels are in reach of one mouse click.
- Guidance on workflow
 - While executing a method, the user receives information about the status of process, required actions, and the subsequent steps of the analysis.
 - The parameters for a step can still be edited/modified before the step is executed.
- State-of-the-art Architecture
 - *visionCATS* features a client/server architecture, enabling scalability from a single workstation to a multi-user lab network
 - Easily extendable
 - Easy to install (plug & play) and to service
- Compliance
 - User management (different contents/rights, passwords) for data security
 - Backup (with schedule assistant) for data safety
 - 21 CFR Part 11 (System logger, E-Signature, options related to deletion, motivated change management; for further information see online help at: <u>http://hptlcmethods.cloudapp.net/300/administration/21CFR_Part11.html</u>
 - Qualification (IQ/OQ)

 System Suitability Test (based on R_F values of marker compounds) to check and ensure that the analysis was performed appropriately. The test is passed when the detected peaks are positioned within the range established during method development.

2 Getting started

2.1 Main window

Ξ	A	visionCATS by CAMAG® - Licensed to CAMAG with SN 100001	-	- 8 ×
+	Explorer		· · · · · · · · · · · · · · · · · · ·	Instruments 7 ×
	Quick access and search	• 🕥 -> 📫 - Demo Project - 🛅 Example Analysis	Sort: Name 🔻 🔺	-
Ele	In current folder Example Analysis:	Comparison Viewer Created: 30-Jan/2017 16:47:36 Changed: 21-Jup 2019 07:05:32 by: visionCATSuser by: visionCATSuser by: visionCATSuser	•	1 22
1	Search P	AIII Example Analysis 1 Created: 16/Dec/2013 15:1747 Changet: 06-Jan/2018 08:27:25 by: CAMAG by: visionCATSuster	Notes: Plane HX004754	TLC Visualizer 2 250873
Ede	<u>۳</u>	KIII Example Analysis 2 Home Series Teample Analysis 2		
1		Example Analysis 3 quant absorption Created: 06-Jan-2015 10.51:11 Changed: 06-Feb-2015 10.229-48 by: CAMAG by: CAMAG		TLC Visualizer 2
Tege		Example Analysis 4 quant fluorescence Crewted: 06-Jan-2015 14:17:29 Dearget: 29-Aug-2019 13:42:19 by: CAMAG by: visionCATSuser		260732
X Tools	Advanced search	Example Analysis 5 MWL sulfonamides Created: 07-Jan-2015 11:33:51 Changed: 12-Jai/2019 14:34:44 by: CAMAG by: ValionCATSuser		
**		Example Analysis 6 spectrum scan Created: 14-9e9-2015 09:23:00 by: Bicar Centred: 14-9e9-2015 09:23:00 by: WalchCATSuser		TLC Scanner 4 251017
Options		Example Analysis 8 related substances (volume) Created: 01 Feb 2017 0839/04 by: Biczer Centives Changed: 07 Feb 2017 0839/04 by: WisionCATSuser		251017
0		Example Analysis 9 related substances (dilution) Crented: 01-0ep-2016 13:26:30 by: Biezer Centriva by: Biezer Centriva		D
Help		AIII Example Analysis SWL MWL Spectrum Sulfonamides Created: 29-0ep-2015 08:06:21 Metanic Resear Based Research Instructor	•	
R 7			1126 explorer items (23 displayed)	
	Preview: All Example Analysis 4 qua	ant fluorescence	Tab to display first: Auto	
	Tr. Vial ID Description Vol.			
	1 510795, Orthosiphon 5.0 2 R3518,1 sinensetin standard 1.0		Notes E-Signature	
	3 510795 Orthosiphon 5.0 4 R35181 sinensetin standard 2.0	Images Scans Spectra SST Evaluation		
	5 \$10795 Orthosiphon \$.0 6 R3518.1 sinensetin standard 4.0			
	7 R3518_1 Sinensetin control 5.0 8 R3518_1 sinensetin standard 6.0	Orthogram Ref.		
	g S10795, Orthosiphon 5.0 10 R3518,1 sinensetin standard 8.0			
	11 \$10795 Orthosiphon \$.0			
	12 R3518_1 sinensetin standard 10.0			
	13 S10795, Orthosiphon 5.0 14 R3518,1 sinensetin standard 12.0			
	15 R3518_1 Shenseth control 5.0			
-				
Analysis	Example Analysis 4 quant fluorescence load	ded 📃 🔬 Default: 🚺 User: visio	onCATSuser Server: CM429MB-W10.camag.ch 😐	Used memory: 329 MB

Elements of the Main window:

- A Main Toolbar
- B Explorer and search window shows available projects / files (and their status)
- C Preview window (shows preview of a selected file)
- D Optional: Instruments window (shows all installed instruments and their connection status)
- E System Status Bar

visionCATS was developed for routine work. Users work in "project folders". In each folder, a method file is created first, which is based on a validated method documents and the standard operating procedure of the lab (*e.g.* template Ph. Eur. 2.8.25). All analyses performed with the method are typically stored in the same project folder. Comparison files generated from the analyses belong here as well.

To create a new general method template, a new method, or a comparison file an existing folder needs to be selected from the explorer or an additional one created (New folder): Select "New" / "New folder" from the main toolbar.

Then in the open folder a new method/comparison can be created (selection at the "New menu"). For creating own methods go to chapter 6.

3 Working with method templates

visionCATS supports routine work according to the general chapters on HPTLC of the USP and Ph. Eur. For this, different method templates are provided.

On CAMAG's website method templates are available for download.

Download zip-folder at: https://www.camag.com/downloads

The downloaded method template(s) can be imported into the *visionCATS* database, selecting / creating an appropriate folder, *e.g.* templates.

The templates include HPTLC standard parameters for al steps of qualitative analyses (no scanning densitometry). To create a method for an individual project based on the template, right click the template and select "copy to" or press Ctrl+Shift+C and then save the method with the name of the selected project. Next, open the new method and add information about SST, developing solvent (mobile phase) and derivatization and change any parameters that are not according to the standard template.

After saving the new method file is ready to use.

+	Capitorer 🗠	- Template USP 20							
-	HPTLC-Steps	Chromatography	y Data	SST	Œ			Report	Log
	Sequence		HPTLC Steps						
1	Tr. Description	Wd.							
-	2			-		ĥ			
@	3								
Tage .	4		A A Description		-	And in case of			
ž	6					-			
-	7								
n.			-						
	9 10								
_	11								
•••	11 12 13 14 15								
	14								
R 7	15								
			Preview						
					_		1		
					-				
								Execute Met	Nee

4 Working with methods from the Method Library

The CAMAG Method Library is a repository of methods that can be downloaded directly a *visionCATS* installation. Each method package includes three files:

- An instrument method (A) ready to use in *visionCATS* in two versions (one for Linomat 5 and another one for the ATS 4)
- A method document (B) in a form (e.g. docx) which may serve as an SOP. This file contains a description of the System Suitability Test (SST) and acceptance criteria for passing samples
- An Image Comparison file (C) with reference images against which each analyzed sample can be compared and evaluated, based on acceptance criteria specified in the method document.

For download of methods from the library and method transfer validation see chapter 5.

5 Method transfer

5.1 Downloading a method from the Method Library

To download a method, click "Tools" on the Main Toolbar and select Method Library.

+	Project Explorer	F9
New	 Instruments 	F10
	System Log	F11
File	Edit Substances / Vials	F12
Edit	😥 Edit global lists	F8
	Full System Log	
Tags	The second secon	
*		
Toola	F	
X Options		
?		
Help		
Q 77		

The overview page of the Method Library will open.

Connected to CAMAG Library Tyy Import Packages (.pxf)	Plant name		Date filter	Show	all	Advanced s	search >		
M	Plant Other Plant part	*	From 31-Mar-2014	O Show	only Local Library				
		wing new versions	To 22-May-2019 🛱	O Show	only CAMAG Library				
General								Downloads	
								-	0 B/s
	عمار لمنتار لينما إيسنا ليم	8 9 •	н			Page 1	of 15 😴	Name Alpinia katsumadai	Progress Completed
Latin plant name Adhatoda vasica	Plant part leaf	English drug name Malabar nut tree	Description This method identifies dried M nut tree leaf (Justicia adhatodi syn.: Adhatoda vasica Nees.) b HPTLC fingerorint and discrimi	a L. V	Date 14-Jul-2015 11:43:39	Download	Deploy		
Aesculus hippocastanum	seed	Horse Chestnut	This method identifies dried Ho Chestnut seed (Aesculus hippocastanum L) by HPTLC fingerorint and discriminates Ir	orse v1	05-Feb-2015 12:28:06	7	3		
Alpinia katsumadai	seed	Katsumada galangal	This method identifies dried Katsumada galangal seed (Alp katsumadai Hayata) by HPTLC fingerprint and discriminates d	v1 inia	10-Jul-2015 09:15:35	*	21		
Alpinia officinarum	rhizoma	Lesser galangal	This method identifies dried Le galangal rhizome (Alpinia officinarum Hance) by HPTLC fingerorint and discriminates d	sser _V]	10-Jul-2015 09:25:52	7	3		
Alpinia oxyphylla	fruit	Sharp-leaf galangal	This method identifies dried Sh leaf galangal fruit (Alpinia oxyp Miq.) by HPTLC fingerprint and discriminates dried Ginger rhiz	arp- v1 hylla	10-Jul-2015 11:52:17	¥			
Althaea officinalis	leaf	Marshmallow	This method identifies dried Marshmallow leaf (Althaea officinalis L.) by HPTLC fingerp and discriminates dried root of	v1 rrint	10-Jul-2015 08:18:11	¥			
Althaea officinalis	root	Marshmallow	This method identifies dried Marshmallow root (Althaea offcinalis L.) by HPTLC fingerp and discriminates dried leaves	v1 rint	10-Jul-2015 08:25:32	포			

CAMAG continually adds new methods. Please note that new methods generated with the most recent version of *visionCATS* are not compatible with previous *visionCATS* versions. To have access to all methods an update to the latest version of *visionCATS* is required.

The selected method is downloaded by clicking on the arrow button (1). The download progress is shown at (2). When download has finished the method can be imported to the database by clicking on (3).

Import Packages (. Export license in	Fidera	Plant name Plant part	v ng new versions	Date filter From 31-Mar-2014 Count filters To 22-May-2019 Count filters	0		y Local Library y CAMAG Library	dvanced se					
General											Downloads		
	2 3 4	5 6 7	8 9 +	н				Page 1	of 15	2	Name	0 B/s Progress	_
Latin plant name Adhatoda vasica	Pla leaf	nt part	English drug name Malabar nut tree	Discription This method identifies dried M nut tree leaf (Justicia adhatod syn: Adhatoda vasica Nees.) E HPTLC fingerint and discrim	alabar v1 i L, v	ersion	0515 14-Jul-2015 11:43:39	Download	Deploy		Alpinia katsumadai	0.0%	
Aesculus hippocast	anum see	d	Horse Chestnut	This method identifies dried H Chestnut seed (Aesculus hippocastanum L) by HPTLC fingerprint and discriminates in	irse y1		05-Feb-2015 12:28:06	¥	31				
Alpinia katsumadai	see	d	Katsumada galangal	This method identifies dried Katsumada galangal seed (Alp katsumadai Hayata) by HPTLC fingerorint and discriminates d	inia ^{v1}	1	10-Jul-2015 09:15:35	±1					
Alpinia officinarum	rhiz	oma	Lesser galangal	This method identifies dried La galangal rhizome (Alpinia officinarum Hance) by HPTLC fingerorint and discriminates d	sser y1		10-Jul-2015 09:25:52	*	₽ 3				
Alpinia oxyphylla	fruit		Sharp-leaf galangal	This method identifies dried SI leaf galangal fruit (Alpinia oxyg Miq.) by HPTLC fingerprint and discriminates dried Ginger rhis	arp- v1 hylla	1	10-Jul-2015 11:52:17	4					
Althaea officinalis	leaf		Marshmallow	This method identifies dried Marshmallow leaf (Althaea officinalis L) by HPTLC finger and discriminates dried root of	v1 rint		10-Jul-2015 08:18:11	¥					
Althaea officinalis	root		Marshmallow	This method identifies dried Marshmallow root (Althaea offcinalis L.) by HPTLC fingerp and discriminates dried leaves	v1 int		10-Jul-2015 08:25:32	4					

In the next step the suitable version of the instrument method (ATS 4, Linomat 5, or both) are selected at (1), then the destination folder is selected at (2), or if a new folder is created at (3).

Explorer	Method Library X			· · · · · · · · · · · · · · · · · · ·
Connected to CAM Import Packages Coport Remain	(orf)	Plant name Plant part Chily Jerns having new version	Item Marco M	
General			Develop	K
Athanola vasica	7 3 4 Plant		Very In the package, deploy the CAMAG Method Files for the following application instruments: Very Very Very Very Very Very Very Very Very	0 Bis Drogess staumate Completed
Assocutus hippoca	stanum seed	Horse Ches	Select the folder in which you want to deploy the package :	
Alpenia kataumad	4	Katsumada	Alpina officinarum	
Alpinia officinanz	n shizom	a Lanner gale	Blue cohosh Sowella resin	
Alpinia oryphylla	fut	Sharp leaf	Cannabie NP	
Althans officinals	-	Marstonali	When Policy Compared Folder When the destination index ready contains an item with the same name: () Key both files (the imported file will be renamed)	
Althana officinalis	. Post	Marshmale	O bont import	
103 distinct method	a on CAMAG Server 107	methods on CAMAG Server 23 de	ativit methoda diverbiaded 27 mathoda diverbiaded	

Note: For a direct access to the Method Library an internet connection is needed. The companies' firewall needs to allow access to <u>http://hptlcmethods.cloudapp.net</u>. visionCATS communicates via Port 10501 (default). For lab PCs with no Internet access methods can be downloaded with the Standalone Downloader as PXF files and later imported using the Import Packages (.pxf) button. You can find the Standalone Downloader installer in the visionCATS server's installation folder (the default installer file is located at C:/Program Files (x86)/CAMAG/visionCATS/MethodCollectionMainInstaller.exe). When opening the Standalone Downloader for the first time, you will be prompted to import your license file. The Standalone Downloader has a user interface and functionalities similar to the Method Library tool of visionCATS, except that it downloads the files to the user-definable destination folder.

5.2 Performing a method transfer validation

Method transfer to your lab is very simple: transfer validation stipulates that the SST (System Suitability Test) must pass! After downloading and importing a method from the Method Library you can access the imported files from the Explorer window. Each method includes a method document that describes the entire procedure and the R_F values for the SST. Execute the method as described and the check the SST according to Section 9. Unless otherwise stated in the method document CAMAG recommends as general acceptance criterion that the R_F should not vary more than $\Delta 0.05$.

Check out our case study *Identification of fixed oils by HPTLC* to see how method transfer is done: <u>https://www.camag.com/article/identification-fixed-oils-hptlc</u>

6 Creating a new method

To create a new method or method template from scratch, a folder needs to be selected or an additional one created (New folder) from the main toolbar (selection at the New menu).

Then in the open folder a new method can be created (selection at the "New menu"). After entering the name (usually the same as the project folder) click "ok". A new window open, where the required steps can be selected by clicking on the instrument icons. The steps will be added to the bottom area and (later) executed in the order from left to right. Steps can be deleted if needed or rearranged in the bottom area by dragging/dropping them.

With a click on "Finish Step Definition" the settings window will open

HPTLC-Steps	Chrometography Data	SST	æ		Report	L
Sequence	HPTLC Steps					
fr. Description	Vol.					
1						
2						
4		× ¥				
5						
6						
7						
8						
9						
10						
11		1				
12						
13						
15						
15						
	Preview					
	Preview					
			-	-		

Use the device icons to change settings like solvent type for application, SST requirements, developing solvent (mobile phase), etc. All settings that are fix for the respective method must be entered. Default setting for each step including the plate layout are in compliance with $\langle 203 \rangle / 2.8.25$.

	 Module preparation 	>						
			Pre-drying		Drying time [min] 5 🛟			
Les rest	Plate preparation	<	 Activation 	>				
100			Pre-conditioning	>				
			Solvent 1-Butanol, a	cetic	acid, water (66:17:17) 🔹 😢			
	Development	<	Conditioning	>				
			Ving		Drying time [min] 5 🛟			
N	otes :							
						_	OK Cano	el

By clicking on "Execute Method" the analysis can be performed.

For each analysis the sequence table is opened first by clicking on it. Enter for each sample and standard (reference) a unique Vial ID, enter the application volume, select the rack position (for HPTLC PRO Module APPLICATION and ATS 4), select type (sample or reference) and tick tracks used for the SST. In the "Description" additional information on the sample/reference can be added.

HPTLC-Steps 2	Chromatography	3	Data	Sequence Table Defin	nition			
Sequence Ir. Vial ID Description	_	HPTLC Ste	ips	Add Add Delete overspot sequence contents	Remove Insert	Cut Copy Paste Inse	rt Left Center	
				Tr. Vial ID	Description		Vol. (µl) Positior	n Type SST
				1				
				2				
		4.7	THE PARTY OF	3				
				4				
				5				
		(6				
				8				
				9				
				10				
				11				
				12				
				13				
				14				
				15				
				Sequence table notes:				OK Cance

After clicking "OK", visionCATS will guide you through the different process steps.

6.1 Creating a qualitative method (*e.g.* identification of a herbal drug)

All process steps are selected as descripted in the method document. It is recommended to start with a Documentation (TLC Visualizer) step. This will be recognized by the software as "Clean Plate" image(s) and subtracted automatically from the image captured after development.

A typical scenario could be:

First capture an image of the empty plate, then apply the samples/references, develop the plate, capture an image of the developed plate, derivatize the plate, and capture an image of the derivatized plate.

The related HPTLC process includes those steps:

The sequence and number of process steps can vary depending on the method. Each step can be also be performed multiple times (*e.g.* an image prior to and after derivatization or with different capture settings, different ATS 4 for different dosage speeds for application of samples prepared with different solvents, two or more derivatizations).

Note: visionCATS supports different options for each process step. Samples can be applied either by HPTLC PRO Module APPLICATION, ATS 4 (Automatic TLC Sampler), by Linomat 5 (semi-automatic TLC Sampler) or manual with capillaries (Nanomat). Development can either be performed isocratic with the HPTLC PRO Module DEVELOPMENT, ADC 2 (Automatic Developing Chamber), by gradient with AMD 2 (Automated Multiple Development), or manual with a tank (Twin Trough Chamber, Flat Bottom Chamber, Horizontal Developing Chamber dimensions). Derivatization can be done by immersion (with the

Chromatogram Immersion Device), by automated spraying (with the Derivatizer) or by manual spraying, Data Acquisition can be done with the documentation system (TLC Visualizer/TLC Visualizer 2) and by scanning densitometry (TLC Scanner 3/TLC Scanner 4).

6.2 Creating a quantitative method

For quantitative methods two different options are available for Data acquisition. Either peak profiles can be generated from captured images or densitograms can be recorded with the TLC Scanner.

A typical scenario could be

First capture an image of the empty plate, then apply the samples/references, develop the plate, capture an image of the developed plate, scan the developed plate in absorption and/or fluorescence mode, derivatize the plate, and capture an image of the derivatized plate.

The sequence and number of process steps can vary depending on the method. Each step can be performed multiple times (*e.g.* a scanner step prior to and after derivatization).

7 Performing an analysis

The *visionCATS* workflow is based on instrument methods (either derived from method templates, provided by CAMAG, or created from scratch). A method is required before an analysis can be performed. Between different methods, HPTLC is a very flexible technique. For high reproducibility of analytical results flexibility must be limited within a method.

By a click on "Execute Method" a window opens and the name of the respective analysis file can be entered. By default the name is created with the method name combined with date and time.

Ξ						visionCATS by	/ CAMAG [®] − Licensed to CA	MAG with SN 100001			
+ New	Explorer	MIII ID of Malabar n	. ATS4 [read-only] 🗙								
	HPTLC-Steps	Chromatograph	y Data	SST						Report	Log
File	Sequence		HPTLC Steps								
	Tr. Description 1 Vanicine 2 Vasicinone 3 4 5 6 7 8 9 10 11 12 13 14 15 5	Vol. 8.0 8.0									
			Preview								
					-	Vasicine Vasicinone				Execute Me	thod

After confirming the name by clicking on OK the Chromatography tab of the analysis file will open. In there, all settings and parameters can still be edited (not recommended). For routine work only information in the sequence table (A) must be entered after clicking on it. More information on the sequence table is available at:

http://hptlcmethods.cloudapp.net/300/method_analysis_file/chromatography/sample_sequence.html?highlight=sequence%20table

visionCATS is guiding through the analysis. In (B) plate layout parameters could still be edited (this should rather be done in the method). In (C) the entire HPTLC process is displayed. All steps can still be edited as long as they have not been executed). Completed steps are marked with a green arrow (B). In (D) a preview of the plate layout is shown. When executing a step, progression and instrument status are also displayed in this area. (E) provides instructions for the analyst, available instruments, and displays generated data during the execution of a step.

8 Data view

After all steps of an analysis have been executed, the Data View will open. The last captured image will be displayed. (A) allows to switch between three different views: Images (images of the entire plate), Tracks (track-oriented view), and Profiles (image profiles and/or densitograms). (B) displays the sequence of all captured images within this analysis. By clicking on either the entire plate is shown in the respective detection mode. (C) is the Data View Toolbar, containing general tools, R_F and track tools, and image enhancement tools. More information on the Data View Toolbar at:

http://hptlcmethods.cloudapp.net/300/method_analysis_file/dataview/data_view_toolbar.html #lbl-dataviewtoolbar

In (D) "Remarks" can be added to the analysis file (*e.g.* import an image of MS data obtained by HPTLC-MS) that will be displayed in the report and a "Report" can be generated (per default a full report of the whole analysis will be generated, including all settings, run time, results, etc.). Custom report templates can be saved and set as default. More information at:

http://hptlcmethods.cloudapp.net/300/administration/generalsettings/report.html#lbl-reportsconfig

With a click on "Log" (D) (requires option 21 CFR Part 11) the Analysis log file will be displayed.

8.1 Tools

The Toolbar in the Data view contains all tools for image editing and image data processing (general tools (A), R_F tool and select tracks for comparison (B), image enhancement tools (C), annotations (D)).

All icons are explained at:

http://hptlcmethods.cloudapp.net/300/method_analysis_file/dataview/data_view_toolbar.html #lbl-dataviewtoolbar

The most relevant icons are in section (B) and (C):

(B): " R_F Tool" displays lines at R_F 0 and R_F 1 (area of interest)

" $R_{\rm F}$ " Tip adds an $R_{\rm F}$ value to a zone of interest

0.9		0.9
0.8		- 0.8
0.7		- 0.7
0.6		- 0.6
0.5		- 0.5
0.4	RF: 0.36	- 0.4
0.3		- 0.3
0.2		- 0.2
0.1		- 0.1

"Sequence allows" selecting single or multiple tracks for image comparison (and together with "Adjust sequence position" to optimize the track position and width, if needed).

By a click on "Export for Comparison" a new window opens. File name, tracks, and detection modes (images and profiles) for a Comparison file can be selected. Further information is available in Section 14.

	Sector and the sector s	
Add tract	ks and steps to a comparison Steps to export Step Developed 12 Developed 11 Developed 11 Derivatized 1 R 366 R TWhite	 ● Create a new comparison ○ Open an existing comparison Enter the name of the new comparison file: I To add in the following folder:
	All tracks selected to export Link image and profile comparison tracks	 *** Common horsetail herb ** Equisetum ** Equisetum 3 ** New Folder Current Folder OK Cancel

By a click on "Generate Profile" image profile are generated (for each (pixel) line of the track *visionCATS* calculates the luminance from detected RGB values). Plotting the luminance as a fuction of R_F values generates peak profiles, which can be used for image-based quantitative evaluations. Data are accessible in the track and profile view, and in an evaluation tab.

(C): Image Enhancement tools

SpotAmp increases the contrast of the zones. After selecting the SpotAmp tool click on the background once or up to four times (maximum contrast 4.0). Original data are displayed after a click on "Reset changes".

White Balance allows to re-define "what is white" by clicking on the part of the captured image with a white background.

Normalize Exposure allows a normalization of the entire plate to one reference track. The default is set on track 1 and can be changed in the general settings. This feature is active for High Dynamic Range Images (HDRI) captured under UV 366 nm (sequence of images with different exposure times summarized in one). A click on "Show exposure range" displays the selected track for normalization and allows a manual change. This feature was implemented for comparing samples originating from different plates in fluorescence mode.

Clarify virtually changes the illumination setting after capturing to make weak zones better visible (for HDR images).

8.2 Export of Images

For export of images different options are available. Access the window "Export Image" by clicking on the icon at the tool bar or by right mouse-click on the captured image.

Images can be exported with or without annotations to a local disk or copied to clipboard for copy-paste to another file (*e.g.* a Word file).

1 HPTLC-Steps 2 Chromatography	3 Data 4 Spectrum 5 SST 6.1 Evaluation 🖀 +	Remarks	Report	Log
Data Type Images Tracks Profiles		<u>.</u> = 6		ľ
Overview				
Chronological Illumination				
Derivatized 1a (2)	Export image Please choose what you want to export in the image:			
	Export everything			
Developed 1a (3)	Export plate only			
	Export interesting area			
	Export interesting area with annotations			
	⊙ Options			
Clean 1a (2)	Cancel			
	Manufacture of the second se			

9 Working with SST

The SST (System Suitability Test) is a test for assessing quality and reproducibility of the chromatographic system. CAMAG has implemented an SST according to the recommendations of the HPTLC Association. Methods from the HPTLC Association feature a set of standards with defined R_F positions. For instrument methods from the *visionCATS* Method Library the ΔR_F was set to 0.05. This is a recommendation for analyses performed on different days or in different laboratories. Other criteria can be defined.

For the SST a tick on the respective track(s) in the sequence table (Chromatography tab) is required.

Add	Add	Remove	4 Liii Insert		Move up	Move down	Cut	Сору	Paste	Insert copied	₹ L		nter 👻		
Tr.	Vial ID		Desc	ripti	on						Vo	I. (µl)	Position	Туре	SST
1	R12345		Vasic	ine								8.0	A1	Reference	✓
2	R12346		Vasic	inor	ne							8.0	A2	Reference	✓
3	S12345		Samp	ole u	nknov	vn						8.0	A3	Sample	

After performing an analysis the SST can be validated in the SST tab.

SST Table						
Add Add M Image: Constraint of the constraint						
Substance	RF	ΔRF	Step	λ	Min. height	Status
Substance Vasicinone	R ⊧ 0.530	∆ <i>R</i> ⊧ 0.050	Step	λ R 254 ▼		Status

Example:

In the SST tab, the acceptance criteria for the SST are added (pre-set in the method template or set in the performed analysis). Then the detection mode(s) (wavelength(s)) for validating the SST is/are selected. For SST on images a profile must first be generated ("Generate Profile"). Then click on "Check" for computed evaluation (maximum of a peak within the window will be detected if AU is larger than 0.1) and indicated by a green (passed) or red (failed) arrow.

Note: It is possible to manually mark as passed an SST definition via the check box on the banner.

d Delete Profiles Ch Substance	eck	RF	ΔRF	Step		λ	Min. height	Status	Descript
Curcuminoid a		0.400	0.050		i1a ▼	🔲 RT White 🔻		✔ Passed	
Curcuminoid b		0.280	0.050	🎒 Derivatized	i1a ▼	RT White	0.100	✓ Passed	
							• • • •		
T View								_	
	Track 1	l at waveleng	gth: RT Whit	e		S	ubstances	ès 🖬 🔠	
0.0 0.1	0.2	0.3	0.4	0.5	0.6	- AU		1 ℝ	
, ()									
7									
5									
· [—			
		>				Curcum	inoid a		
						Curcum	inoid b	_	
E						_			
2									
1									

10 Scanning Densitometry

visionCATS controls the TLC Scanner 3 and TLC Scanner 4. Scanning densitometry generates spectrally selective quantitative responses for the individual tracks of the HPTLC plate as "Peak profiles from densitometry" (PPD). Several scanning steps (*e.g.* after development and/or after derivatization) can be programmed (single wavelength, multiple wavelengths and measurements in absorbance and/or fluorescence mode). For any detected peak on the plate, a UV-VIS spectrum can be recorded. For evaluation of the data, *visionCATS* provides five different calibration functions (*e.g.* linear and polynomial). Based on spectral data, peak purity can be determined.

The optical system

Any of the three light sources, high pressure mercury lamp, deuterium lamp, or halogentungsten lamp can be positioned in the light path by a motor drive. **(1)** (Further information can be found in the TLC Scanner Manual)

10.1 Single-wavelength scan

For a single-wavelength scan a scanner step is added to the HPTLC process in the method template.

Explorer VIII Demo me HPTLC-Stops Chroma		557 🗄		* Report Log
	vication	Development	Derivatization	Con Data Acquisition
HPTIC PR	O Module ATTON	HTTL: PRO Module DEVELOPMENT		
			2	
AT	24	ADC 2	Derivatzation dip	Visualizer/Visualizer 2
Line	21 1415	AMD 2	Devivalization spray	Scannar 4
Nane	a and a second s	Tranber	Demostrat	Bosnet 3
HPTLC Steps				
ä 🗓 I	i i i	li,		Finish Step Definition

By a click on "Finish Step Definition" you will get to the Chromatography tab. A click on the Scanner icon opens the Scanner settings.

There, "Scanner type" (Scanning mode), "Measurement mode" and "Lamps" can be chosen. Default is set to single-wavelength scan in absorbance at 254 nm. If another value is entered, *e.g.* above 400 nm, then the firmware will switch on the lamp for this range (deuterium lamp for UV range and tungsten for VIS range). If you select fluorescence mode, then you can select the wavelength for excitation (either deuterium/tungsten or selection of a spectral line of the mercury lamp). For fluorescence detections between different cut-off filters can be chosen, *e.g.* for excitation with 366 nm the filter K400 is well suited for filtering the light to be detected (only light above 400 nm can pass the filter).

Scanner 4 Setting	js							🗲 Deriva	tized 1b
Scanner type	Single λ	Ŧ							
Optimization for	Resolution	Ŧ							
Measurement mode	Fluorescence	Ŧ		Filter:		*			
Detector mode	Automatic	Ŧ	<	Quick scan start:	4.9 🎍	mm	Analog offset:	10 % 🔻	
				Quick scan end:	73.1 🍦	mm	Sensitivity:	Automatic 🔻	
				Quick scan track:	All tracks	v	0 adjust position Y:	4.9 🌻 mm	
							0 adjust track:	Track 1 🔹 🔻	
Speed/resolution/slit	HPTLC *			Scanning speed:	20 mm/s		Slit:	5 x 0.2 mm, micro	
			<	Data resolution:	100 µm/st.				
	Partial scan			Start:	4.9 🛔	mm	End:	73.1 🍦 mm	
Wavelength selection									
Selection: User					Wavelength	(s) ap		254 nm	
Lamp: Mercury							265 nm	280 nm	
,							297 nm	302 nm	
							313 nm	🗸 366 nm	
							405 nm	436 nm	
							546 nm	577 nm	
							579 nm		

In certain cases, changes to the default settings for scanning speed, data resolution and slit size makes sense. The wider the slit, the higher the light intensity while resolution of peaks is reduced. Especially for small peaks data resolution set to 25 μ m will lead to better results.

10.2 Multi-wavelength scan

If multiple analytes in the same analysis absorb at different wavelengths or if a subsequent measurement in fluorescence and absorbance is needed, a multi-wavelength scan can be performed.

Scanner 4 Settings							🗲 Derivat	
Scanner 4 Setungs							C Derivat	IZEG ID
Scanner type	Multiple λ 🔹 🔻							
Optimization for	Resolution •							
Measurement mode	Advanced 🔻		Filter:		T			
Detector mode	Automatic 🔹	<	Quick scan start:	4.9 🕴	mm	Analog offset:	10 % 🔻	
			Quick scan end:	73.1 🍦	mm	Sensitivity:	Automatic 🔻	
			Quick scan track:	All tracks	v	0 adjust position Y:	4.9 🌻 mm	
						0 adjust track:	Track 1 🛛 🔻	
Speed/resolution/slit	HPTLC .		Scanning speed:	20 mm/s	v	Slit:	5 x 0.2 mm, micro	
		<	Data resolution:	100 µm/st	Ŧ			
	Partial scan		Start:	4.9 🌲	mm	End:	73.1 🍦 mm	
Wavelength selection								
Wavelength(s) applied:	205 ‡ nm Absor	bance	▼ Lamp: Deut	erium	*	Filter: K400 💌		
Reorder 🕂	366 ▼ nm Fluores	cence	 Lamp: Mercu 	ry	Ψ.	Filter: K400 🔻		
]	Deuterium			Tungst	en		[
			500	600		700 800	900	
200,0	300 0	400	500	600		700 800	900	

11 Image profiles

With the Visualizer Ultimate Package Peak Profiles from images (PPI) can be obtained with a mouse-click. The software calculates for each track the resulting luminance (in the middle of the track) and plots it as a function of the R_F value.

To generate PPI, just click on the icon in the Data view toolbar.

PPI are available in the Tracks view (A), in the Profiles view (B), and in the evaluation tab ((C) for quantitative evaluation).

12 Evaluation

After all steps of an analysis have been executed, an evaluation tab can be added (click on "plus" to open an evaluation tab). Up to five different evaluations can be performed for each analysis file. *visionCATS* supports different user levels. In chapter 12.1 the "Easy mode" is described.

							_						
E] Expl	orer	Am Ex	ample	Analysicence	* X							۰
1	н	PTLC-S	teps 2 C	hroma	tography 3		Data 4 Spe	ectrum 5	SST	6.1 Evaluation 📋 🕂	Remarks	Report	Log
	Eval	uation \$	Steps				Substance table						
		_	Substan	(e)				1	_				
			m	1/12			Reuse substances		-				
	Def	nition Ir	tegration Subst. assign	Cali	vation Results		Name	Sinensetin					Advanced options
							RF		0.330				
							∆R≠		0.020				
	Seq	uence					λ		Ŧ				
	Tr.	Vial ID	Description	Vol.	Туре		Calibration type	Area	Ŧ				
	1	S107	Orthosiphon		Sample *		Calibration mode	Polynomial	Ŧ				
	2	R351	sinensetin sta	1.0	Reference *		Range deviation		5.00 %				
	3	S107	Orthosiphon	5.0	Sample *								
	4	R351	sinensetin sta	2.0	Reference *								
	5	S107	Orthosiphon	5.0	Sample *								
	6	R351	sinensetin sta	4.0	Reference *								
	7	R351	Sinensetin co	5.0	Sample *								
			sinensetin sta	6.0	Reference *								
	9	S107	Orthosiphon	5.0	Sample *	:	References Samples						
			sinensetin sta		Reference *		Concentration unit type:	Mass / volume 🔻	r				
			Orthosiphon		Sample *			Sinenseti					A
			sinensetin sta		Reference *								
			Orthosiphon		Sample *		 R3518_150106 	_ M 100.000 _ Hg/					
			sinensetin sta		Reference *								
	15	R351	Sinensetin co	5.0	Sample *								
													Y

12.1 Basics of quantitative evaluation in visionCATS

visionCATS guides you through the evaluation process:

Evaluation Steps	
Definition Integration Subst. Calibration assign.	on Results

In "Definition" the substances to be analyzed and their concentration in the reference vials are defined. The quantity applied of each reference will be calculated from the application volume and the defined concentration. At (A) (red arrow) substances can be added and named. At (B) the concentration of the reference solution(s) is (/are) entered.

Lustion Steps The importer and the steps Line importer and the steps Li	Substance table Reuse substances Name RF AR A Calibration mode Range deviation	Sinensetin 0.330 0.020 Area Polynomial 5.00%				Advanced
Visit Deter Bater Calibration Results Visit D Description Vol. Type Stort, Cothosphon 5.0 Sample * R351 Sinnessetin sta 1.0 Reference * Stort, Cothosphon 5.0 Sample *	Name RF ΔRF Α λ Calibration type Calibration mode	Sinensetin 0.330 0.020 v Area v Polynomial v			-	Advanced
Intern Pregration Reache exergin, Cellivation Reache Veal ID Description Vol. Type 5107. Crthosphon 5.0 Sample v 5107. Orthosphon 5.0 Sample v	Name RF ΔRF Α λ Calibration type Calibration mode	Sinensetin 0.330 0.020 v Area v Polynomial v				Advanced
wenne Vial ID Description Vol. Type 5107. Orthosphon 5.0 Sample * R351 sinensetin sta 1.0 Reference * 507. Orthosphon 5.0 Sample *	Rr ΔRr Α λ Calibration type Calibration mode Calibration mode	Area * Polynomial *				options
Vial ID Dasciption Vol. Type 5107 Orthosiphon 5.0 Sample * R351 sinersetin sta 1.0 Reference * 5107 Orthosiphon 5.0 Sample *	ΔRr A λ Calibration type Calibration mode	Area v Połynomial v				
Vial ID Dasciption Vol. Type 5107 Orthosiphon 5.0 Sample * R351 sinersetin sta 1.0 Reference * 5107 Orthosiphon 5.0 Sample *	λ Calibration type Calibration mode	Area * Polynomial *				
Vial ID Dasciption Vol. Type 5107 Orthosiphon 5.0 Sample * R351 sinersetin sta 1.0 Reference * 5107 Orthosiphon 5.0 Sample *	Calibration type Calibration mode	Area + Polynomial +				
S107 Orthosiphon 5.0 Sample * R351 sinersetin sta 1.0 Reference * S107 Orthosiphon 5.0 Sample *	Calibration mode	Polynomial *				
R351 sinersetin sta 1.0 Reference + S107 Orthosiphon 5.0 Sample +						
S107 Orthosiphon 5.0 Sample *	Range deviation	5.00 %				
R351 sinersetin sta 2.0 Reference *						
\$107 Orthosiphon 5.0 Sample *						
R351 sinensetin sta 4,0 Reference *						
R351 Sinensetin co 5.0 Sample *			• • • • • • • • • • • • • • • • • • • •			
R351 sinersetin sta 6.0 Reference * \$107 Orthosiphon 5.0 Sample *	References Sample					
S107 Orthosiphon 5.0 Sample * R351 sinersetin sta 8.0 Reference *	: United the					
S107 Orthosiphon 5.0 Sample *	Concentration unit typ	e: Mass / volume 🔻				
R351 sinersetin sta 10.0 Reference *	1 B	Sinensetin				
S107 Orthosiphon 5.0 Sample *	: R3518_150106	🖬 100.000 _ng/ml 💌				
R351 sinersetin sta 12.0 Reference *						
R351 Sinensetin co 5.0 Sample *						

Use the tab "Samples" to define the sample reference amounts.

References Samples											
	Amount	Volu	ume solution	Reference amount	Related to						
S10795_150106_01	500.000 mg		500.00 ml	1.000 g	٧						
S10795_150106_02	500.000 mg		500.00 ml	1.000 g							
S10795_150106_03	500.000 mg		500.00 ml	1.000 g	v						
R3518_150106_02	500.000 mg		500.00 ml	1.000 g	v						

Continue with the next step "Integration". The profiles (PPD or PPI) are displayed here. On the left side different detection modes can be selected.

In "Easy mode" you can directly continue with the next step "Substance Assignment" and position the substances at the proper R_F (moving each substance name to the expected R_F position).

HPTLC-Steps 2 Chromatography 3	Data 4	Spectrum 5	SST	6.1 Evaluation	+					Remarks	Report	L
valuation Steps	Substance Tab	e										
Substance	Display all H	ide all										
Vefnition Integration Subst. Calibration Results	Name	Sinensetin										
assign.	RF required	0.330										
	R# found	0.328										
verview	∆ <i>R</i> ≠ required	0.020										
Developed 1b	∆R≠ found	0.015										
Developed 1b	λ required											
2 366	λ found	366 nm										
					•							
	Substance Ass	ignment										
		All tracks at u	vavelength: 366		Substan		- 1 D					
		Partitions at v	avelengut. 000		Jubia	neo 🥪	≌+					
						11	51 2 R 3 f	5) 4 (R) 5 I	151 6 R 7 15	ର ୫.୮୧ ବ୍ୟସ	10 R 11 S	12 🖪 1
	0.0 RF	0.1 0.2	0.3	0.4	0.5 AU							
	1.0											
	1 0.9											
									_			
	0.7											
	0.6											
	0.5				-							
	0.4									_		
					Sinensetin @ 3	66 🔻 🗞 😰					_	_
	0.3				*							
	0.2									_		
	0.1							_	_			
	0.0											
					0.5 AU							

In the next step "Calibration" the best fitting regression mode is selected (and applied for evaluation via peak height or area).

In the final step "Results" a summary of the quantified amounts/concentrations of each substance in the sample(s) is shown.

HPTLC-Steps 2 Chromatography 3	Data	4 Spectru	m 5	SST 6.1 Evaluation	1 +			Remarks	Report	Log
Evaluation Steps		Results								
Definition Interpretion Substance Interpretion Results	Engel Speed	Colleges all Reset to Colleges all Reset to Colleges all Reset to Colleges all Coll	v					Sort:	Track number	•
	^	Sinensetin @ 36	6 nm	(8 samples assigned)						
Overview		 Sample 'R3518 	150106_02'	102.5 ng/ml	CV=0.30 %	(2 applications)	102.5 µg in 1.000 g			
✓ Toggle selection for all substances ✓ Sinensetin @ 366 nm		∧ Volume: 5.0 µ		102.5 ng/ml	CV=0.30 %	(2 replicas)				
		Track 7	R¢ 0.332	102.3 ng/ml	511.7 pg					
		Track 15	R# 0.330	102.8 ng/ml	513.8 pg					
		 Sample 'S1079 	5_150106_01'	96.90 ng/ml	CV=0.13 %	(2 applications)	96.90 µg in 1.000 g			
		Volume: 5.0 µ		96.90 ng/ml	CV=0.13 %	(2 replicas)				
		Track 1	RF 0.314	96.99 ng/ml	484.9 pg					
		Track 9	R# 0.335	96.82 ng/ml	484.1 pg					
		 Sample 'S1079 	5_150106_02	70.99 ng/ml	CV=0.19 %	(2 applications)	70.99 µg in 1.000 g			
	1	∧ Volume: 5.0 μ		70.99 ng/ml	CV=0.19 %	(2 replicas)				
		Track 3	RF 0.317	70.90 ng/ml	354.5 pg					
		Track 11	R# 0.335	71.09 ng/ml	355.5 pg					
		 Sample 'S1079 	5_150106_03'	61.85 ng/ml	CV=0.16 %	(2 applications)	61.85 µg in 1.000 g			
		∧ Volume: 5.0 µ		61.85 ng/ml	CV=0.16 %	(2 replicas)				
		Track 5	R€ 0.325	61.92 ng/ml	309.6 pg					
		Track 13	Rr 0.333	61.77 ng/ml	308.9 pg					

12.2 Manual Mode

In the "Integration" step you can select one of three user levels. Default is the "Easy mode". On the right hand side a switch to "Manual mode" can be done. In the "Manual mode" advanced baseline and peak detection features are enabled, and the peak table is shown. Use this mode for manual peak integration.

Explorer III Example Analysicence		•	
1 HPTLC-Steps 2 Chromatography 3	Data 4 Spectrum 5 SST 61 Evaluation 🖹 +	Remarks Report Log	
Evaluation Depo	Peaks table The The The Sector (1995) and (1996) there is 19 metrics (1996) gifteent types in the latt grane (1996) the table(1996) 		llug AA 220m v Line v mode v View v 220m v Line v Ø Bounds
Overview	Integration		Smoothing
University Image: Second		to Particle P	✔ Basatives ▲ ▲ LS Interactives ▲ ✔ Packs ■ ■ Ø Packs ■ ■ ▲ Ø Oct (/ Sazes (legacy) / Sauss) ▲ ■ ▲ Ø Saparation … … 0.10 € Breaksdig ● … … 0.10 €

To add a peak select the "Add manually a peak" icon.

Ctrl + Mouse-scroll allows zooming-in.

12.3 Expert Mode

In the "Integration" step you can select one from three user levels. Default is the "Easy mode". If "Expert mode" is selected, all available features are accessible. Use this mode to configure advanced features such as smoothing parameters, (blank) track subtraction and dual wavelength subtraction.

Bounds

"Bounds" limit the evaluated data to those between the start and end bound (in R_F unit). "Clip outside" will hide data outside the bounds.

Smoothing

Profile raw data usually have some noise, which can adversely affect the peak detection. Smoothing can remove this noise. There are three smoothing algorithms available: Savitzky Golay (SG, which is the default), Moving average (MA), Gauss (newly implemented for
visionCATS). For each algorithm, a window or width can be adjusted to specify the degree of noise filtered.

Baseline

By default background correction is done with the slowest slope algorithm (automatic baseline detection, works on most data). "Interactive" allows manually adding baseline segments for background correction. To display the detected baseline use the button "Display Baseline".

Profile Subtraction

Dual Wavelength: select a base wavelength in the combi box. For each track PPD of the base wavelength will be subtracted from the PPD(s) of the other wavelength(s) selected.

Track: select a base track in the combi box. The PPD of this (blank) track will be subtracted from the PPD of other tracks.

Peaks

For peak detection two algorithms are available: Optional Quadratic Interpolation (OQI) and Gauss (default). For both peak detection algorithms the "Separation", "Sensitivity" and "Threshold" parameters can be adjusted.

12.4 Peak table export

In "Manual" and "Expert" modes the peak table can be exported of either a single track or of all tracks as csv files (comma separated values) for evaluation in Excel or other software.

12.5 Related substances

The feature "Related substances" allows determining the impurities within a sample (e.g. in an active pharmaceutical ingredient). For calculating the percentage of an impurity (impurities) a calibration curve of the main substance is generated. In the "Definitions" step of the "Evaluation" on the right hand side (A) "Advanced Options" are available. If "Related substances" is selected, the drop down list in (B) allows assigning the main and the related substance(s). There are three modes for evaluation: classic, by dilution (fixed volume), and by volume (fixed concentration). The classic mode (default mode) calculates the quantity of impurity/impurities based on the concentration of the main substance. In "By dilution" and "By volume" mode one track is defined as reference concentration/application. This can be defined in the "Related substances parameters". The result is then calculated in % impurity. Different calibration levels of the main substance can be generated by applying individual standards (same volume/by dilution) or a single standard (different volumes). For this feature, two example files are available for download (Example Analysis 8 related substances (volume) & related substances (dilution) in the provided Example Analysis 9 zip-folder: https://www.camag.com/downloads).

xploter Analysilume) (r	ead-only] ×		
HPTLC-Steps 2 Chromatography 3	Data 4 Spectrum 5 S	T 6.1 Evaluation 📋 🐳	Remarks Report Log
valuation Steps	Substance table		
	Reuse substances	+	- II.
Definition Integration Subst. Calibration Results	Name Salicylic acid	Acetylsalicylic acid	Advanced a splice
assign.	Rr 0.00	0.000	A
	ΔRr 0.010	0.010	✓ → Related substances
Sequence	λ	· · · · · · · · · · · · · · · · · · ·	Internal standard
r. Vial ID Description Vol. Type	Calibration type	Height 👻	L internal standard
	Calibration mode	Polynomial v	Reproducibility
	Range deviation	0.00%	
	Related substances Related substance	Main substance V B	Limit test
R627 Acetylsalicyfic 5.0 Sample *			
			Υ
R627 Acety/salicyfic 2.0 Reference *			
R627 Acety/salicyfic 4.0 Reference *	References Samples		
R627 Acetylsalicylic 6.0 Reference * 0 R627 Acetylsalicylic 8.0 Reference *			
1 R627 Acetylsalicylic 80 Reference *	Concentration unit type: Mass / volume *		
2	Salicylic acid	Acetylsalicylic acid	
3	: V R627-01	₽ 62.500 <u>µg/ml ▼</u>	

Via the advanced mode (A) the "Related substances" feature can be accessed. Then in (B) "Main" and "Related" substance(s) are selected.

		Data 6. Spectrum	5 SST 0.1 Evaluation 1		Remarks Report La
valuation Steps		Substance table			
and the life (and		Seuse substances	+		· 23
ladviter imparter Sales. Caller	ratur. Reads		lic acid Acetylsalicylic acid		Marine
		Rv Aller	0.000 0.000 0.010 0.010		0
iquence		λ 230 m			Δ
Vial ID Description Vol.	-	Calibration type	Huight +		
Tarto Description Free	1794	Calibration mode	Polynomial *		
		Range deviation	0.00 %		
		Related substances Relate			
R627 Acetylasicolic. 5.0	Sample +		Related substances parameters		
Net/ Activision 3.0	sampa •		Related substances mode: By dilution (fixed volume) *		
R627 Acetylusicylic 50	Reference +		Allowed impurity amount: 2.00 %	-	
	Reference +		Sample to use as reference concentration: R627 *	B	
	Reference *	References Samples			
	Reference +	Concentration unit type: Mass /	without the second s		
were a semilar 20			Saley		
		w R627-25			
		v R627-0.5			
		G R627-1 A		ок	
		 ₩627-1.5 ₩627-2 ₩ 	⁴¹ 2.00000 %		
			H 2.0000 %		
			# 2,0000 %		
			4 20000 %		
e.		₩ 1627-2			
Refere	ences Sa				-
Refere	ences Sa	₩ 1627-2	# 20000%		-
	_	, MIZ72 "	С		-
	_	₩ 1627-2	С		
	_	mples it type: Mass / vo	C lume •	id la	
	_	mples it type: Mass / vo	C lume 👻 licylic acid Acetylsalicylic ac	id	
Conce	entration ur	mples it type: Mass / vo	C lume ¥ lícylic acid Acetylsalicylic ac	id	
	_	mples it type: Mass / vo	C lume 👻 licylic acid Acetylsalicylic ac	id a	
Conce	entration ur R62725	mples it type: Mass / vo	C lume licylic acid Acetylsalicylic ac 0.25000 %	id	
Conce	entration ur	mples it type: Mass / vo	C lume ▼ licytic acid Acetylsalicytic ac 0.25000 %	id a	
Conce	R62725 R627-0.5	mples it type: Mass / vo	C lume Iicylic acid Acetylsalicylic aci 0.25000 % 0.50000 %	id	
Conce	entration ur R62725	mples it type: Mass / vo	C lume licylic acid Acetylsalicylic ac 0.25000 %	id a second	
Conce	R62725 R627-0.5 R627-1	mples it type: Mass / vo 5a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C lume ▼ licylic acid Acctylsalicylic ac	id	
Conce	R62725 R627-0.5	mples it type: Mass / vo	C lume Iicylic acid Acetylsalicylic aci 0.25000 % 0.50000 %	id 1	
Conce ~ ~	R62725 R627-0.5 R627-1	mples it type: Mass / vo 5a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C lume ▼ licylic acid Acctylsalicylic ac	id	

At (A) the "Related substances parameters" can be accessed. Default is the classic mode. For the "Related substances by dilution" one sample track is defined as reference concentration (B). In (C) the concentration of the individual standard solutions is entered.

HPTLC-Steps 2 Chromatography 3	Data 4 Spectrum	5 55	f 6.1 Evaluation 🟦 🐘 Remark	is Report	Log
raluation Steps					
	Reuse substances		6		113
adultan Integration Subst. Collimation Results	Name Salicylic	acid	Acetylsalicylic acid		Advanced
anajar.	RI	0.000	0.000		
	ΔRr	0.010	0.010		
quence	λ		•		
Vial ID Description Vol. Type	Calibration type		Height *		
	Calibration mode		Polynomial *		
	Range deviation		0.00 %		
	Related substances Related				
R627 Acetylsalicylic 5.0 Sample +			Itances parameters		
Net / Activolityle 3.0 Sample *			bstances mode: By volume (freed concentration) * B		
R627 Acetylsalicylic 2.0 Reference +		Allowed in	purity amount: 2.00 %		
R627 Acetylsalicylic 4.0 Reference +		Reference	application Track 11, 10.0 µL applied + corresponds to 2.00 % of impurities.		
R627 Acetylsalicylic 6.0 Reference +	References Samples				
R627 Acetylsalicylic 8.0 Reference *	Concentration unit type: Mass / vo	her.			
R627 Acetylsalicylic 10.0 Reference *	•				
	R627-01				
	mar el				

At (A) the "Related substances parameters" can be accessed. Default is the classic mode. For the "Related substances by volume" one sample track is defined as reference application (B).

12.6 Internal standard

The feature "Internal standard" may increase the accuracy of the analytical result. By addition of an internal standard to all samples and standards the variations in the sample preparation (different extraction yields) and errors in the measurement chain are reduced/corrected. In the "Definitions" step of the "Evaluation" on the right hand side (A) "Advanced Options" are available. If "Internal Standard" is selected, in (B) with a tick, the analyte used as internal standard is selected. The "Example Analysis 7 Internal Standard" (download zip-folder at: https://www.camag.com/downloads) provides an example.

HPTLC-Steps 2 C	hromatography 3	Data 4 Sj	pectrum 5 SST	6.1 Evaluatio	on 📋 🕂		Rei	marks Report
valuation Steps		Substance table						
		Reuse substances			+			
Definition Integration Subst.		Name		Methandienone				Advan
Detinition Integration Subst. assign	Calibration Results	RF	0.000	0.00	00			A A
		ΔRF	0.010	0.0				Related substance
Sequence		λ	*		*			
		Calibration type			- -			 Internal standard
r. Vial ID Description	Vol. Type	Calibration mode			- -			Reproducibility
1 2 S152 0.01 mg/mL	10.0 Reference *	Range deviation		5.00				
+ \$152 0.04 mg/mL	2.0 Reference *	Internal standard	~					🗆 📃 Limit test
s S17508 1:25 diluted	2.0 Sample *		M				<u> </u>	
4 S152 0.01 mg/mL	1.0 Reference *							
\$152 0.04 mg/mL	2.0 Reference *							*
s S152 0.01 mg/mL	2.0 Reference *							
+ S152 0.04 mg/mL	2.0 Reference *					• • • • • •		
5 \$152 0.01 mg/mL	4.0 Reference *	References Samples						
+ S152 0.04 mg/mL	2.0 Reference *							
7 \$17508 1:25 diluted	2.0 Sample 🔻	Concentration unit typ						
3 S152 0.01 mg/mL	1.0 Reference *		Methyltestosterone	Methandienone				
+ \$152 0.04 mg/mL	2.0 Reference *	v S15211-10	/	10.000 µg/ml	v			
9 S152 0.01 mg/mL	6.0 Reference *	v \$15206-250	40.000 µg/ml *	1				
+ \$152 0.04 mg/mL	2.0 Reference *							
10 S152 0.01 mg/mL	8.0 Reference *							
+ \$152 0.04 mg/mL	2.0 Reference *							
11 S17508 1:25 diluted	2.0 Sample v							
12 S152 0.01 mg/mL	1.0 Reference *							
+ \$152 0.04 mg/mL	2.0 Reference *							
13 S152 0.01 mg/mL	10.0 Reference *							
+ \$152 0.04 mg/mL	2.0 Reference *							
14 \$17508 1:25 diluted	2.0 Sample 🔻							

12.7 Reproducibility

The feature "Reproducibility" evaluates the deviation of the peaks height/area of a certain substance applied on several tracks. For each substance, the reproducibility test calculates:

- the average (height or area)
- the coefficient of variation (CV)
- the deviation of each value from the average.

Sequence Seq		2 Chromatography 3	Data 4	pectrum 5 SST 6.1 Evaluation a +	Remarks Report Lo
a w w w w w w w w w w w w w w w w w w w	valuation Steps		Substance table		
Name Condentation Name<		Subtance	Reuse substano	n +	* B
No. 0.000 Apr. 0.000		Subst. Calibration Results	Name		
Service A Control (Service)		assign.	Re	0.000	
Val Domptoni Val Type Area 1 Grad Ania 2.5 Sample 1 Grad Ania 2.5 Sample <t< td=""><td></td><td></td><td>ΔR_F</td><td>0.010</td><td>Related substances</td></t<>			ΔR_F	0.010	Related substances
Vet II completes Vet II Completes Vet II Completes Vet II Completes Vet II Completes Vet III Completes Vet IIII Completes Vet IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	quence		λ	· · · · · · · · · · · · · · · · · · ·	A
10 10 <td< td=""><td>Mal II Decel</td><td>tion Mat Time</td><td>Calibration type</td><td>Area 👻</td><td>Li Libernal standard</td></td<>	Mal II Decel	tion Mat Time	Calibration type	Area 👻	Li Libernal standard
1 Orstel Ano 2.5 Sangle * Based Section 1 Orstel Ano 2.5 Sangle * Reproducibility B 1 Orstel Ano 2.5 Sangle * Reproducibility Constellation 1 Orstel Ano 2.5 Sangle * Reproducibility Constellation 1 Orstel Ano 2.5 Sangle * Reproducibility Constellation 1 Orstel Ano 2.5 Sangle * Reproducibility Reproducibility 1 Orstel Ano 2.5 Sangle * Reproducibility Reproducibility 1 Orstel Ano 2.5 Sangle * Reproducibility Reproducibility 1 Orstel Ano 2.5 Sangle * Reproducibility Constellation 1 Orstel Ano 2.5 Sangle * Reproducibility Reproducibility 1 Orstel Ano 2.5 Sangle * Constellation Reproducibility 1 Orstel Ano 2.5 Sangle * Constellation Reproducibility		hn 2.0 Sample v *	Calibration mode		V Reproducibility
1 forst Mar 25 Bangle 2 2 forst Mar 25 Bangle 2 1 forst Mar 25 Bangle	1 Erste Ba				
1 Orote Maria 2.5 Sample • 3 Orote Maria 2.5 Sample • 3 Orote Maria 2.5 Sample • 1 Orote Maria 2.5 Sample • 3 Orote Maria 2.5 Sample • 1 Orote Maria 2.5 Sample •	1 Erste Ba	hn 2.0 Sample +	Reproducibility	B	🗆 🔜 Limit test
1 Ont Mar 23 Sangle + 1 Ont	1 Erste Ba	hn 2.0 Sample v			
1 Orotalian 2 3 Saryole - 1 Orotalian 2 Saryole - 2 Orotalian 2 Saryole - 1 Orotalian 2 Sary	1 Erste Bi	hn 2.0 Sample v			
Tork Name 2 a Sample * Tork Name 2 a Sample * Tork Name 2 a Sample * Constantion 2 a Sample * Concentration with type Mass / volume * Concentration with type Mass / volume * Concentration with type Mass / volume *	1 Erste Ba	hn 2.0 Sample v			
1 Orto Markov 2, 2 Sample * 1 Orto Markov 2, 2 Sample * 2 Orto Markov 2, 2 Sample * 1 Orto Markov 2, 2 Sample * Concentration unit type Mark / volume * Concentration unit type Mark / volume *	1 Erste Ba	hn 2.0 Sample v			
to the land 2 a fample v Concentration unit type Mass / volume v Concentration unit ty	1 Erste Ba	hn 2.0 Sample v			
1 Brst Eilwin 2.0 Sample * Consentiation unit type: Mass / volume * 1 Crist Eilwin 2.0 Sample *	1 Erste Bi	hn 2.0 Sample v	References Samp		
1 Cirita Bahn 2.0 Sample v Duritoritan	1 Erste Ba	hn 2.0 Sample v	Concentration unit t	a Mass / unluma - *	
1 Erste sann 2,0 Sample *					
1 finis fath 2.0 Sample + : ↓ 2 * 10.000 symm.**			~ 2	<u>A</u> 10.000 <u>µg/ml ▼</u>	
	1 Erste Ba	hn 2.0 Sample v			

At (A) the "Reproducibility" feature can be accessed. Use the check box at (B).

Explorer X= 00_Sc4_Y	×																				
1 HPTLC-Steps 2 Chromato	graphy 3	Data 4	Spectri	um 5	SST	6.1 Evaluat	ion 📋 6.2	Evaluation 1	1 +									ş	Remarks	Repor	rt Lo
Evaluation Steps		Results	Rep	oducibility	Α																
Definition Integration Subst. Calibration	ion Results	Epert Real																			
		A Qualifi	cation @	600 nm	CV=0.5	57 % Average	=0.051 (pe	eak area)													
Overview						1.50 % -															
Toggle selection for all substan		Track	Re	Peak area																	
	.05	S Track 1	Rr 0.406	0.05147	0.74 %																
Qualification @ 600 nm		S Track 2 Track 3	R¥ 0.406 R¥ 0.407	0.05160	0.98%	1.00 % -		+													
		S Track 3	Ry 0.407 Ry 0.407	0.05146	0.00%																
		S Track 5	R# 0.407	0.05088	-0.41 %		- T		+												
		S Track 6	R+ 0.407	0.05093	-0.33 %	0.50 % -									+						
		S Track 7	Rr 0.407	0.05098	-0.23 %																
		S Track 8	Rr 0.407	0.05117	0.15%									-							
		S Track 9	R# 0.407	0.05135	0.50 %	0.00 % -			_	+	_			_	_		-		_	_	_
		S Track 10	R≠ 0.407	0.05133	0.46 %																
		S Track 11	R≠ 0.407	0.05108	-0.02 %							_	- + -								
		S Track 12	Rr 0.408	0.05076	-0.66 %	-0.50 % -					+									+	
		S Track 13		0.05068	-0.82 %	-0.30 %												-			+
		S Track 14	Rr 0.408	0.05087	-0.44 %													- T-			
		S Track 15	Ry 0.408	0.05077	-0.63 %														- 1		
						-1.00 %	Tr. 1	Tr. 2	Tr. 3	Tr. 4	Tr. 5	Tr. 6	Tr. 7	Tr. 8	Tr. 9	Tr. 10	Tr. 11	Tr. 12	Tr. 13	Tr. 14	Tr. 15

In the Results tab, the "Reproducibility" results are displayed in a separate tab (A).

12.8 Limit test

The feature "Limit test" determines whether the quantity or concentration of a substance in one or more samples is above or below a specified limit. The "Limit test" is a fail/pass check for each individual sample track.

Advanced											
Adversed Adversed						stance table			Steps	aluation	va
Advanced					†	euse substances			Substance		
						e Decursin	1	Calibration Results	markin Baber		
					0.270				assign.		
Related substances					0.010						
_					*		1			quence	1q
Internal standard					*	aration type Height		Vol. Type	Description	Malin	
Reproducibility					Ψ	aration mode Linear-1		2.0 Reference *			
						no deviation	_	2.0 Reference *			
🖊 🗔 Limit test 🛛 🗛					B /	t test		2.0 Sample *	Angelica giga	\$133	
							_	2.0 Sample *	Angelica giga	\$133	
				Limit test parameters				2.0 Sample *	Angelica giga	\$133	
v				Limit test parameters				2.0 Sample *	Angelica giga	\$133	
								2.0 Sample +	Angelica giga	\$133	
		Ŧ	ntration	Mode: Conce				2.0 Sample +	Angelica giga	\$133	
		-	5-141111-2	Reference vial: S1249		ences Samples	: 8	2.0 Sample +			
					dume v	entration unit tune: Mass / vol					
		ove 🔿 At	Below 🔘 Abov	Limit test pass if: 🔘							
		-		0							
)%	Allowed deviation: 5.0							
						S12495-141111 15.00					
	_		5-141111-2 Below 💿 Abov	Limit test pass if:	Jume × Decursin 000 µg/ml × 000 µg/ml ×	R13277-14111 20.00	-	2.0 Sample * 2.0 Sample * 2.0 Sample * 2.0 Sample * 2.0 Sample *	Angelica giga Angelica giga Angelica giga Angelica giga Angelica giga Angelica giga	\$133 \$133 \$133 \$133 \$133 \$133	8 9 10 11 12 13

At (A) the "Limit test" feature can be accessed. Use the check box at (B). Set the criteria at (C).

HPTLC-Steps 2 Chromatography 3	Data 4		5 SST	6.	1 Evaluation 📋	6.2 Evalu	ation 📋	6.3 Ev	aluation	f 6.4	Evaluation	8 6	.5 Evaluati	on 🖹	
aluation Steps	Results	Limit test	A												
efinition integration Subst. Calibration Results	Engent Strange														
	 Decursi 	n @ 366 nm	Cor	centrat	ion min.=15.0				tion						
verview					Limit	est passed est failed	Lir	nit forence c	concentrat	100					
Toggle selection for all substances							-	renembere		2011					
Decursin @ 366 nm	Track	R.	Concentratio	Status	16										
	S Track 3	R# 0.241	18.84 µg/ml		14										
	S Track 4	R# 0.241	25.15 µg/ml	~	14										
	S Track 5	R# 0.239	22.38 µg/ml	~	12										
	S Track 6	R# 0.239	16.05 µg/ml	~											
	S Track 7	R# 0.239	23.57 µg/ml	~	10										
	S Track 8	R# 0.239	26.94 µg/ml	~	7										
	: S Track 9	R≠ 0.238	12.33 µg/ml	x	- 8 b										
	Track 10	R≠ 0.238	23.81 µg/ml	~											
	 Track 11 	R≠ 0.236	23.63 µg/ml	~	6										
	S Track 12	R≠ 0.238	23.43 µg/ml	~											
	Track 13	<i>R</i> ≠ 0.238	13.36 µg/ml	x	4										
	S Track 14	RF 0.236	15.44 µg/ml	~	2										
					2										
					0										

In the Results tab, the "Limit test" results are displayed in a separate tab (A).

12.9 Export results

The results table can be export as csv. file for *e.g.* further evaluation in Excel.

xplorer Amalysicence	×					
HPTLC-Steps 2 Chromatography 3	Data 4 Sj	ectrum 5	SST 6.1 Evaluatio	n 🖹 🕂		
valuation Steps	Results					
valuation Steps	Hesults					
Entration Integration Subst. Calibration Results	Expect of Colleges all Asset to Original way	Export multa (CPV)				
	 Sinensetin () 366 nm	(8 samples assigned	1)		
Werview	Sample 'R:	1518_150106_02'	102.5 ng/ml	CV=0.30 %	(2 applications)	102.5 µg in 1.000
Toggle selection for all substances	 Volume: 	5.0 µl	102.5 ng/ml	CV=0.30 %	(2 replicas)	
🗹 Sinensetin @ 366 nm	Track 7	Rr 0.332	102.3 ng/ml	511.7 pg		
	Track 15	R# 0.330	102.8 ng/ml	513.8 pg		
	 Sample 'S' 	0795_150106_01'	96.90 ng/ml	CV=0.13 %	(2 applications)	96.90 µg in 1.000
	 Volume: 	5.0 µl	96.90 ng/ml	CV=0.13 %	(2 replicas)	
	Track 1	Rr 0.314	96.99 ng/ml	484.9 pg		
	Track 9	Rr 0.335	96.82 ng/ml	484.1 pg		
	Sample 'S	0795_150106_02	70.99 ng/ml	CV=0.19 %	(2 applications)	70.99 µg in 1.000
	 Volume: 	5.0 µl	70.99 ng/ml	CV=0.19 %	(2 replicas)	
	Track 3	Rr 0.317	70.90 ng/ml	354.5 pg		
	Track 11	Rr 0.335	71.09 ng/ml	355.5 pg		
	 Sample 'S' 	0795_150106_03	61.85 ng/ml	CV=0.16 %	(2 applications)	61.85 µg in 1.000
	 Volume: 	5.0 µl	61.85 ng/ml	CV=0.16 %	(2 replices)	
	Track 5	R# 0.325	61.92 ng/ml	309.6 pg		
			61.77 ng/ml	308.9 pg		

12.10 Export graphs

All graphs (calibration curves, spectra, limit test results, reproducibility results) can be exported by a right mouse click. The graphs can be exported with different resolution and saved to a destination folder or to clipboard.

Example of an exported calibration curve (white background for all exported graphs)

13 Spectrum Scan

After single- or multi-wavelength scan spectra of selected peaks can be recorded. For this, another scanner step is added.

In the Scanner settings the range can be selected, e.g. from 190 to 400 nm.

Scanner 4 Settings							🗲 Derivatized 1
Scanner type Optimization for Measurement mode Detector mode	Spectrum Resolution Absorbance Automatic	▼ ▼ ▼ ▼					
Speed/slit	HPTLC -		Spectrum speed:	20 nm/s 🔹		Slit: 5 x	0.2 mm, micro 🔹
Spectrum parameters		<					
Reference spectrum:	per plate	*	<	X:	10.0 mm	Y: 10.0 mm	
		Purity		Distance to	o peak center:	0.5 mm	
Lamp: Deuterium & Tur	n▼ Start λ:	190 ‡ End	A: 400 🗘				
2							
Deuterium			Tungste	en .			
	\sim						
290 300 90	400,00	500	600	700	800	900	

There are two options available: the classical spectrum scan of selected peaks or spectrum scan for purity testing. Purity testing is selected by a tick.

Spectrum parameters										
Reference spectrum:	per plate	v	,		X:	10.0	mm	Y:	10.0	mm
	- I	Purity	`	Dist	ance	to peal	center:		0.5	mm

In this case for each peak a spectrum will be recorded at 3 positions comparing beginning, middle, and end of a peak (peak pure or co-elution of a compound).

By clicking on "continue" in the "Chromatography" tab (to start the scanner step for spectrum scan) the "Spectrum" tab (A) is opended. *visionCATS* will guide you through all required steps (B). First the substance(s) and peaks are selected for spectrum scan (C).

HPTLC-Steps 2 Chromatograph	hy 3 Data 4 Spectrum 6 SST +	Remarks Report I
etrum Steps	Spectrum Definition Table Spectrum Table Spectr	
Developed 1b		
254		
🍘 Developed 1a 🌗		
	Substance Positioning	
	All tracks at wavelength: 254 Substances	
		7 1

Then spectra will be recorded (Execution) and the data window opens (Spectrum data, (A)). At the rights side (B) the results (correlation) for either overlay of spectra obtained at the same R_F on different tracks or overlay within one zone (start – middle – end) for purity testing are shown. Maxima can be displayed as well.

14 Working with Comparison files

Comparison files allow comparing sample tracks and/or spectra of substance peaks from the same and/or from different plates. This section uses the data of the "Comparison Viewer" demo file (download zip-folder at: <u>https://www.camag.com/downloads</u>) as an example.

14.1 Image Comparison

For Image Comparison select the tracks of interest from your analysis file (A), (B), (C). The tracks can be exported to an existing or a new Comparison file. By a direct click on (C) all tracks are selected for Comparison.

Clicking on (C) opens a new window, asking for selecting the detection modes and steps for Comparison.

In (A) the steps of the captured images (e.g. before and after derivatization) and the detection modes (UV 254 nm, UV 366 nm, white light) can be selected. In (B) the tracks can be selected.

Then the selected tracks will be exported to an already open, existing Comparison file or the software will ask for the name of a new Comparison file. New tracks are added to the end (right side) of existing Comparison files. If several detection modes have been selected for "Export to Comparison" then (A) allows to switch between them.

Switch within detection modes at (A)

14.2 Profile Comparison

For Profile Comparison tracks of interest are selected from the analysis file in the Data View tab (either Image tab or Profile tab). The tracks can be exported to an existing or a new Comparison file.

By clicking on "Export to Comparison" a new window opens (see next image) asking for selecting the detection modes (A) and steps (B) for Comparison. In (C) the tracks can be selected.

The selected tracks for profile comparison will be exported to the open existing Comparison file or the software will ask for the name of the new Comparison file. New tracks are added to existing Comparison files at the end. There are different display modes: "Overlay" and "Stack" view.

Overlay view; Reference tracks can be moved up at (A) for Comparison.

Explorer III Test Steroides29_02	X ne Comparison Viewer* X	•
Image Profile	Spectrum	Remarks Report Log
View Tracks View Wavelengths	Overlay Stack 03 02 03 04 03 03 02 03	Tools
Overview Comparison tracks Comparison tracks Compare Hele at C	4.00 ····	S15211 Adebandenon 1.15 m.
On Test Steroides_20161129_02	Samples	References
Wavelength/illumination selection		1 Statut Samples Sampl
Count • Developed 1a 254 nm 5		2 5 1000 Texamo (4 any 10 ar) 515001 between (4 any 10 ar) Chlorodelhydomethyles. 2 10101 a 10101 a Chaves (4 any 10 ar) 10100 Chlorodelhydomethyles. 2 10101 a Chaves (4 any 10 ar) 3 1
	6.482 5.680 6.462	3 817370 Clostebol 1.15 mg/10_
	8.00	4 S15206 Methylhestosteron 1.3
		+ 100% ·

Stack view

14.3 Spectrum Comparison

To compare spectra obtained from different substance zones click on "Export to Comparison" (A) at the "Spectrum data" in the "Spectrum" tab of your analysis file.

A new window will open asking for selecting the substances (recorded spectra of substance zones) for Comparison.

15 Other features

15.1 Quick scan / Partial scan

visionCATS allows a manual control of the TLC Scanner 3 and 4. Prior to the scanning densitometric measurement of all sample tracks, a quick scan is performed to adjust the photomultiplier (adjust offset of the detector). In certain cases, the sample matrix (especially in fluorescence detection mode) can have a larger signal response then the target. To focus on the target zone, the quick scan can be performed at a defined area of interest (on a single track, with a start and end position within the entire R_F range) (A). Furthermore, a partial scan can be performed for scanning densitometric measurement of all sample tracks with defined start and end position within the entire R_F range (B). This will lead to larger scaling of small peaks, needed for trace analysis.

15.2 Dual Wavelength scan and (blank) track subtraction

Background signals from matrices, solvent, etc. can cause problems during quantitative evaluation. In the "Integration" tab of the evaluation within the "Export mode" a "Profile subtraction" is available. Either a blank track (pure solvent applied) can be subtracted or in the case of a multi-wavelength scan two scanned wavelengths can be subtracted (Dual wavelength).

15.3 AMD 2 settings

Chromatographic separation of complex samples is a challenging task for every laboratory, particularly when the components span a wide polarity range. The AMD (Automated Multiple Development) offers a convenient and most efficient solution. It employs stepwise elution over increasing solvent migration distances with a gradient that can be designed according to the requirements of the sample.

The principle

- Multiple development over increasing solvent migration distances
- Each successive run uses a solvent of lower elution strength than the previous
- Between runs the layer is dried under vacuum

The result

- Extremely narrow bands due to gradient elution with simultaneous focusing effect
- Enhanced separation capacity with base line separation of up to 40 components over a separation distance of 80 mm
- Highest resolution that can be attained with a planar chromatography system

To perform a polarity gradient, an AMD step is added to the method template (HPTLC steps).

Then the parameters are entered in the "Chromatography" tab after selecting the instrument icon by a mouse click. In (A) the number of bottles is selected and the solvent are defined. In (B) the gradient is entered. In (C) a graph of the gradient can be seen.

16 Reports

Beginning with *visionCATS* version 2.4, custom report templates can be generated in addition to the provided templates. To change the content and design (global css) basic knowledge on html programming is required. Further information can be found in the *visionCATS* online help at: <u>http://hptlcmethods.cloudapp.net/300/administration/report/styles.html</u>

17 Export of Data

For *visionCATS* the option "Export of Data" can be purchased. This option allows exporting the raw data (all data points obtained by scanning densitometry or from captured images). There are two different ways for "Export of Data" with this option: raw data without filtering (smoothing algorithms) and baseline correction, and export of filtered and baseline corrected data. The data are exported as csv. files allowing an evaluation in Excel or MathLab, etc.

Table 1 Export of Data

Data export	Exportable data and their format	Scanning mode
Scanner		
Raw data (no	AU values of all tracks at SWL or	SWL: all tracks at X nm
filter, no	MWL (later for spectra too) from 3D	MWL: all tracks at X1, X2, X2
baseline) *	view profiles	X _n nm
Filtered and	AU values of all tracks at SWL or	SWL: all tracks at X nm
baseline	MWL (later for spectra too) from 3D	MWL: all tracks at X1, X2, X2
corrected *	view profiles	X _n nm
*Metadata	Track position, wavelength(s),	
	Position of blank measurement, Vial	
	ID & sample name (if peaks are	
	assigned), peak detection algorithms	
	(just the name of the used algorithm)	
Format of	and parameters .csv	
exported data	.csv	
Data export	Exportable data and their format	Detection mode
Visualizer	Exportable data and then format	Detection mode
Raw data (no	AU values of all tracks at WRT, 366	WRT, 366 nm, 254 nm (all tracks)
filter, no	nm, 254 nm from 3D view profiles	(
baseline) *		
Filtered and	AU values of all tracks at WRT, 366	WRT, 366 nm, 254 nm (all tracks)
baseline	nm, 254 nm from 3D view profiles	
corrected *		
*Metadata	Track position,	
	Vial ID & sample name (if peaks are	
	assigned), images tools (clarify,	
	exposure normalization, Spot Amp,	
	etc), plate layout, track sequencer,	
	peak detection algorithms (just the	
	name of the used algorithm) and	
	parameters, plate layout, track	
	sequencer	
Format of	.csv	
exported data		

Example of a graph re-drawn in Excel

To get unmodified raw data, the csv. file is exported from the "Data" tab (Profiles).

To get filtered/baseline corrected data (use of peak detection algorithms, smoothing algorithms, etc.), the csv. file is exported from the "Evaluation" tab (Integration).

18 21 CFR Part 11

For *visionCATS* the option "21 CFR Part 11" can be purchased. This option includes: System logger, E-Signature, options related to deletion, motivated change management. For further information, see online help at:

http://hptlcmethods.cloudapp.net/300/administration/21CFR_Part11.html

19 Example Files

Several Example Analysis files can be downloaded at: <u>https://www.camag.com/downloads</u>

After importing the downloaded files to your own *visionCATS* database, making a copy is recommended. Imported files are in "read only" mode. No changes can be saved. Copied files can be used for training purposes.

20 Online help

The current version of the *visionCATS* online help can be accessed at: <u>http://hptlcmethods.cloudapp.net/300/index.html</u>

21 Case studies with application tutorial videos

21.1 HPTLC-Fingerprint of *Ginkgo biloba* flavonoids (qualitative example) <u>https://www.camag.com/article/hptlc-fingerprint-ginkgo-biloba-flavonoids</u>

21.2 Identification of fixed oils by HPTLC (qualitative example, including method transfer validation)

https://www.camag.com/article/identification-fixed-oils-hptlc

21.3 In-process control during chemical synthesis (qualitative example, including HPTLC-MS)

https://www.camag.com/article/process-control-during-chemical-synthesis-ergolinepsychedelics-hptlc

21.4 Quantitative determination of steviol glycosides (quantitative example)

https://www.camag.com/article/quantitative-determination-steviol-glycosides